## Do The Multiplication Tables Help or Hinder?

They can do both. Children come to primary school with a fairly developed, if somewhat limited, sense of number. Thanks to their brain’s capacity to seek out patterns, they can already subitize, and they also have learned a pocketful of simple counting strategies through trial and error. Too often, arithmetic instruction in the primary grades purposefully avoids recognizing these intuitive abilities and resorts immediately to practicing arithmetic facts.

If the children’s introduction to arithmetic rests primarily on the rote memorization of the addition and multiplication tables and other arithmetic facts (e.g., step-by-step procedures for subtraction), then their intuitive understandings of number relationships are undermined and overwhelmed. In effect, they learn to shift from intuitive processing to performing automatic numerical operations without caring much about their meaning.

On the other hand, if instruction in beginning arithmetic takes advantage of the children’s number sense, subitizing, and counting strategies by making connections to new mathematical operations, then the tables become tools leading to a deeper understanding of mathematics, rather than an end unto themselves.

Some students may have already practiced the multiplication tables at home. My suggestion would be to assess how well each student can already multiply single-digit numbers. Then introduce activities using dots or pictures on cards that help students practice successive addition (the underlying concept of multiplication). The idea here is to use the students’ innate sense of patterning to build a multiplication network without memorizing the tables themselves. Of course, this may not work for every student, and for some, memorizing the tables may be the only successful option.